Akurasi Klasifikasi Pengguna terhadap Hotspot WiFi dengan Menggunakan Metode K-Nearest Neighbour

نویسندگان

چکیده

The Current wireless technology is used to find out where the user in room. Utilization of WiFi strength signal from Access Point (AP) can provide information on position a Alternative determination user's room using Receive Signal Strength (RSS). This research was conducted by comparing distance between users 2 or more APs euclidean technique. Euclidean technique as calculator there are two points 3-dimensional plane space measuring length segment connecting points. best for representing and AP. collection RSS data uses Fingerprinting collected 20 detected wifi analyzer application, results scanning, 709 were obtained. value training data. K-Nearest Neighbor (K-NN) Neighborhood Classification predictive new test so that K-NN classify closest existing Based obtained an accuracy rate 95% with K 3. has been done method excellent results, highest minimum error 5%

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization

Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...

متن کامل

k-Nearest Neighbour Classifiers

Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...

متن کامل

Multidimensi Pada Data Warehouse Dengan Menggunakan Rumus Kombinasi

Multidimensional in data warehouse is a compulsion and become the most important for information delivery, without multidimensional data warehouse is incomplete. Multidimensional give the able to analyze business measurement in many different ways. Multidimensional is also synonymous with online analytical processing (OLAP).

متن کامل

Small components in k-nearest neighbour graphs

Let G = Gn,k denote the graph formed by placing points in a square of area n according to a Poisson process of density 1 and joining each point to its k nearest neighbours. In [2] Balister, Bollobás, Sarkar and Walters proved that if k < 0.3043 logn then the probability that G is connected tends to 0, whereas if k > 0.5139 logn then the probability that G is connected tends to 1. We prove that,...

متن کامل

Convergence of random k-nearest-neighbour imputation

Random k-nearest-neighbour (RKNN) imputation is an established algorithm for filling in missing values in data sets. Assume that data are missing in a random way, so that missingness is independent of unobserved values (MAR), and assume there is a minimum positive probability of a response vector being complete. Then RKNN, with k equal to the square root of the sample size, asymptotically produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Sistim Informasi dan Teknologi

سال: 2021

ISSN: ['2686-3154']

DOI: https://doi.org/10.37034/jsisfotek.v3i3.55